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Refraction of finite-amplitude water waves obliquely 
incident on a uniform beach 
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The behaviour of a periodic wavetrain propagating obliquely over water of slowly 
varying depth is studied. The depth contours are taken to be straight and parallel. 
The wave properties used are those of ‘numerically exact’ solutions for waves on 
water of uniform depth. Comparison is made with linear theory which proves to 
be quite accurate for predicting wave direction unless the waves are propagating in a 
direction within about 25” of the contours. The results give a direct indication of 
where waves may break, but do not include dissipation. 

Examples are given which correspond to waves ‘trapped’ within a region of limited 
depth. They are related to edge waves and to caustics of the linear theory. The be- 
haviour of solutions is consistent with earlier work on deep-water waves. This includes 
behaviour we term ‘anomalous refraction’, which is to be discussed in another paper. 

1. Introduction 
The ‘numerically exact ’ solutions for the integral properties of finite-amplitude 

periodic water waves propagating on water of infinite (Longuet-Higgins 1975) and 
finite (Cokelet 1977) depth have led to a number of papers which use them in ‘slowly 
varying ’ situations. This paper gives solutions for waves obliquely incident on a beach 
which is uniform in the sense that its contours are straight and parallel. It builds on 
the paper by Stiassnie & Peregrine (1980) in which solutions are given for waves 
normally incident on a beach. 

Appropriate equations for this problem are readily found from the books by Phillips 
(1977) and Whitham (1974). The two different approaches used by those authors are 
united and discussed by Stiassnie & Peregrine (1979). We take the opportunity to 
make some observations on them in $ 2  where the mathematical methods used are 
described. It was found that some extension of the methods used by Stiassnie & 
Peregrine (1980) is required for waves at  oblique incidence, but we follow them in 
using steady-wave solutions based on Cokelet’s (1977) high-order Stokes-wave theory, 
and on a ‘train of solitary waves ’ for long waves. 

Section 3 of this paper gives some examples of the refraction of waves, incident on 
a beach from deep water, until they reach the minimum depth for which a solution 
can be found. At this limiting depth the waves are always steep, in the steepness 
range where many integral properties have their maximum values. It is reasonable to 
interpret this as an indication of breaking, though strictly it shows only that the 
approximate method of solution is invalid. There is discussion of this point in Stiassnie 
& Peregrine (1980). 

In 5 4 we proceed further and consider waves which cannot propagate to, or originate 
P L M  115 4 
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from, deep water. These are waves which are refracted in such a manner that they 
cannot travel beyond a certain maximum depth. Ray theory using infinitesimal waves 
gives a caustic a t  this critical depth, and waves propagating towards deeper water 
turn parallel with the shore a t  the caustic and then propagate towards shallower water 
as a reflected wave. An alternative way of considering such 'trapped' waves is as 
examples of high-order edge-wave modes. The solutions that are presented here give 
a clear indication that the caustics are similar to those on deep water (Peregrine & 
Thomas 1979; Peregrine 1981). Further, they are similar to the type-R caustics of 
Peregrine & Smith's ( 1979) classification of near-linear caustics. 

One feature of all these caustics is that for a region near them the solution of the 
governing equations is not unique. There is a second steeper solution which has 
qualitatively different propagation properties. We use the term ' anomalous refraction ' 
to describe their behaviour and discuss this and related topics in another paper 
(Peregrine and Ryrie, in preparation). 

No dissipative terms are included. Garrett & Smith (1976) and Christoffersen & 
Jonsson (1980) show how these might be included in a wave-action equation. How- 
ever, for steep waves there are no theoretical results and little experimental work 
from which to derive a reliable description of dissipation. 

There are other recent papers describing waves incident on a uniform beach, using 
accurate wave solutions. Rienecker & Fenton (1981) illustrate their improvement of 
the 'stream-function method ' for finding wave properties by considering waves a t  
normal incidence on a beach. Their method is more accurate than Cokelet's for long 
waves, but does not describe waves close to the highest. Sakai & Battjes (1980) use 
Cokelet's results for this problem. However, they ignore the severe loss of accuracy of 
Cokelet's approach for long waves. 

2. Method of solution 
2.1. The averaged equations 

A wave train propagating on water above a bottom a t  depth h* below a reference level is 
defined by the mean water conditions, depth D* and current U*, and wave properties, 
amplitude a*, frequency w*,  and wavenumber k". The vectors are two-dimensional 
horizontal vectors, asterisks denote dimensional quantities, and all quantities are as- 
sumed to vary slowly with respect to Cartesian co-ordinates x = (xl, xz). The reference 
level for h* is chosen to be the mean water level in deep water since this may best be 
regarded as an 'undisturbed water depth '. The reference frame for the wave quantities 
is chosen to be that in which U is the mean horizontal velocity a t  any point below the 
level of the wave troughs. This follows the convention of many previous authors, but 
does mean that there is a mass flow associated with the waves (that is when U = 0) .  

As in Stiassnie & Peregrine (1979) general averaged equations may be written as 
follows: 

(1) W *  = k * ~ *  + U". k*, 

aD* 
p*- + v. (p*D*U* + I*) = 0, 

at* 

"('*) at* F + v .  [ U * ~ + ( B T * - a l " f a P * D * ~ ) ~ ]  = 0, (3) 
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together with kinematic consistency relations 

and further relations first given by Stiassnie & Peregrine (1979): 

In these expressions: c* is the phase velocity, I* is the average momentum density, 
T* is the average kinetic-energy density, V* is the average potential-energy density, 
uZ2 is the mean-square wave-induced velocity at  the bottom, and 
- 

- 
7" = g*(D* - h") + &U*'+ &$2. 

Equations (1)-(7) are an overdetermined set of equations. One of the superfluous 
equations is (6). It may be deduced by taking the scalar product of (7) with 

p*D*U* + I*. 

The second term becomes identically zero and the first leaves exactly (6). 

Whitham's ( 1974) consistency relations for pseudophase, 
Equations (6) and (7) were derived by Stiassnie & Peregrine (1979) to replace 

au; au; 
ax; ax; - O,  
---- 

when the 'global' vorticity is zero. The curl of (8) reduces to 

Equation (9) should therefore be regarded as an initial condition on the vorticity, 
which remains zero if it  is initially zero. Thus (8) is the only necessary consistency 
relation in that case. (This is briefly indicated by Hayes 1970.) 

A similar argument applies to (4) and ( 5 ) .  The latter gives 

so (4) corresponds to an initial condition. These two cases can be compared with the 
use of the irrotationality condition and Kelvin's circulation theorem for inviscid flow. 

2 . 2 .  Periodic waves with unidirectional depth variation 

Attention is now restricted to monochromatic waves propagating over a bottom 
topography which has straight and parallel contours so that h* = h*(xr). Thus the 
above equations may be simplified by taking a/at* = 0 and a/ax; = 0. By defining 
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a local angle of incidence 8 between k* and the xT direction, (4), ( l ) ,  (2), (3) and (7)  
become, after some integrations, 

kif: = k*sinB = const., 

w* = c*k* + U*. k* = const., 

p*D*UT+IT = Qt = const., 

In  general, the vorticity aUif:/axT, is non-zero, and (14) and (15) are not readily 
integrable. However, as noted above, if the velocity field is initially irrotational it 
remains so. We consider a steady state that may eventually be attained when a 
regular wave train is incident onto a region in which the water is initially undisturbed. 
This implies that all effects due to wave breaking and dissipation are excluded. We 
include a constant value of U: below, but as may be seen from (19) and (20) it may be 
neglected without loss of generality, and is considered to be equal to the velocity 
associated with the wave solutions in subsequent sections. The mass-flow component, 
Q1, is set equal to zero as it would be for an impermeable beach. 

All the variables in (lo)-( 15) are made dimensionless with the appropriate combi- 
nations of p*, g*, k*. Note that this is a ‘local’ scaling since k* is a function of position. 
The constants BT and w*,  and y* = const., the integrated version of (14), are deter- 
mined by reference to an ‘initial state ’. Typically this is deep water and it is convenient 
to  use the value of k* there to make these quantities dimensionless. This is denoted 
by k:. 

After elimination of 8 and U, by the use of (10) and (12) the set of equations becomes 

g*k,* g*k* m = -  
w;2 ’ W Z 2  

m2 = - where 

are dimensionless wavenumbers, 

W ,  = (w* - Uif: k;)/(g”kz)i, 

In  practice it is the constants m2, B,wk and y,w; which are determined a t  some 
reference point. These correspond respectively to longshore wavenumber, onshore 
wave-action flux and definition of reference level. 
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Once the constants and depth h are specified, (16) and (17) have as unknowns the 
wavenumber m and dimensionless wave properties. Two parameters are needed to 
specify these wave properties, for example Cokelet (1977) uses a steepness parameter 
e2 and a depth-related parameter d in his tabulation of wave properties. 

2.3. Solution methods 
To solve (16)-(18) it is easiest to treat h as an unknown to be found from (18). Then 
the wave parameter which appears in the equations in the most complicated manner 
is considered to be given. The approach of Stiassnie & Peregrine (1980) was followed 
in the solutions presented here. It needed some extension as indicated below. 

For moderate to deep water, i.e. k*h* 2 0.6 a method based on Cokelet’s (1977) 
high-order Stokes-wave solution was used. Wave properties are expanded as a power 
series in e2 with coefficients depending only on d ;  up to 50 terms are needed. Equation 
(16) is a quartic for m, and can be solved to eliminate m from (17). After much 
manipulation of the power series (17) can be expressed as the sum of powers of ep, 
of the form N 

a&)&” = 0. (21) 
n = O  

In Stiassnie & Peregrine (1980) the corresponding equation has a power series in e2 
whose roots were found by a technique based on Pad6 approximants. This method 
proved impossible to use here due to numerical difficulties caused by the large differ- 
ences in the magnitude of successive a,. Accordingly the roots of (21) were found, for 
given d,  by treating it simply as a polynomial. Often N = 150 and sometimes N = 60 
sufficed. The accuracy of the results could be checked for the special case 0 = 0,  by 
compariwn with Stiassnie & Peregrine. Once e2 is found all other wave properties, 
depth and flow properties are readily calculated. 

As observed by Stiassnie & Peregrine this method becomes inaccurate for d < 0.6. 
In this work it is also found to be inaccurate for 8within about 10’ of in. An expansion 
for small q5 = +r - 8 proved adequate, as described in $4 .  

For values of d < 0.6, that is for long waves, we follow Stiassnie & Peregrine 
in using a train-of-solitary-waves approximation (TSW). The two wave parameters 
for this approximation are p = k*h,*, where h,* is the depth beneath the troughs and 
the height parameter w, of Longuet-Higgins & Fenton (1974). After some algebra 
(16) and (17) can be written 

2n(m2-m~)t+m4B,w~(2n+p~, )  = 0, (23) 
where q, H, and C, are solitary-wave properties defined in Stiassnie &Peregrine (1980). 
As before, (22) is used to eliminate m, a value of ws is chosen and then (23) is solved 
numerically to find p. As found by Stiassnie & Peregrine, the computation time is 
only 5-10 yo of the time taken to use Cokelet’s solution. 

2.4. Discussion of T S  W approximation 

Since the TSW approximation proves to be rapid and convenient for calculating the 
integral properties of steep long waves, we have considered its possible applications a 
little further. In particular we have used the ninth-order solitary-wave solution of 
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Fenton (1979) to find the variation of horizontal velocity beneath the crests of waves 
as a function of height above the bed. On summing the resulting series and using Pad6 
approximants the velocity profiles obtained were found to be ' reasonable ' only for 
w, < 0.75. That is, the results were clearly incorrect for waves with heights greater 
than 0.69 times the depth. This is perhaps not surprising in view of Fenton's difficulty 
in finding satisfactory velocity profiles for fifth-order cnoidal waves with heights 
greater than 0-5 times the depth, and the discussion of Svendsen & Staub (1981) who 
conclude that the standard solitary- and cnoidal-wave theories should not be used to 
calculate velocity fields for high waves when greater than second-order accuracy is 
required. 

It appears that the revised version of the stream-function method of calculating 
wave properties described by Rienecker & Fenton (1981) is more successful at  des- 
cribing velocity fields (A. New, private communication). It has the advantage that it 
is applicable over a greater range of wavelengths than is Cokelet's method. In this 
context, where we are exploring the character of large amplitude solutions it has the 
disadvantage that it does not accurately describe properties of waves close to the 
highest. As in Stiassnie & Peregrine (1980) we take the limiting high-wave solutions 
to indicate the proximity of breaking. 

3. Shoaling waves 
Sample solutions obtained by the methods described in $ 2  are used to illustrate 

their behaviour for waves propagating over a gently shoaling bottom from deep water. 
Since the equations are algebraic these solutions also hold for other depth variations 
such as deepening water or water with troughs and banks as long as the solutions exist 
at  all intermediate points. 

We use deep water as a reference point and indicate conditions in deep water by the 
subscript co. The constants m2 and Blot are specified by the deep-water wave steep- 
ness a: kz, or equivalent, and direction 8,. 

Eight different values of deep-water steepness were chosen and for each wave 
properties were calculated at six different angles of incidence. The steepnesses are: 

a, = az/k$ = 0.307, 0.197, 0.131, 0.0409, 0.0314, 0.0157, 0.003 14, 0.001 57. 

These are the same as those given for 8 = 0 in Stiassnie & Peregrine (1980). The first 
four correspond to 

E: = 0.5, 0.22, 0.1, 0.01, 
the remainder to 

H,/L, = 0.01, 0.005, 0.001, 0.0005, 

where H = 2a is wave height and L is wavelength. 
Selected results are presented in the figures. Figure 1 shows the variation of ampli- 

tude a = a*kz with depth h = h*k$, for each value of a,, for 8, = 0 and 8, = 60". 
The results for 8, = 0 agree with those of Stiassnie & Peregrine (1980). For 8, = 60' 
the results predicted by linear theory are also shown, together with the value of 8 at 
the least depth with a solution. 

Figure 2 shows the variation of amplitude with depth for one initial steepness 
a ,  = 0.13, at five angles of incidence. It includes examples of anomalous refraction, 
which for this initial steepness only occur when 83" < 8, < 90". Similarly, figure 3, 
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FIGURE 1 .  Variation of wave amplitude with undisturbed depth for 8, = 0 and 60'. The broken 
line shows linear theory for 8, = 60". Values of angle of incidence at 'breaking', O,, are shown. 

which shows the variation of 6 with depth for many of the calculated cases, includes 
anomalous refraction; the lines for €5 = 0.1 and 0.5 at 8, = 85". Anomalous refraction 
is discussed by Peregrine & R,yrie (in preparation). 

As might be expected linear theory gives a fair guide to wave refraction for gentle 
waves. The deviation from linear theory as waves steepen is more marked in wave 
amplitude than direction. The linear solutions are not marked in figure 3 since they 
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FIGURE 3. Variation of angle of incidence 0 with depth h. __ 6% = 0.01 ; - - - -, 6% = 0.1; - - - -, 8% = 0.5. I r n  

are very close to  the line for E: = 0.01 except a t  its shallow-water extremity. All 
solution curves are limited in their depth range. As h decreases a depth is reached at 
which the solution has a singular gradient and our slowly varying spproxiniation 
becomes invalid. This occurs a t  a wave steepness corresponding to the region of maxima 
in wave integral properties. There is also a second very steep solution for slightly 
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FIGURE 4. Variation of depth h,,  amplitude a,, onshore current U,, and longshore Stokes- 
drift velocity ULb, eva!uated at  'breaking' point, with deep-water steepness a, = a s k : .  
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FIGURE 5 .  Variation of set-down 8, and wavenumber k,, evaluated at  the 'breaking 
deep-water steepness a,  = azk:. -, 0,  = 60"; - - -, 8, = 0.  

point, with 
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greater depths. However, that second solution is very likely to be unstable. For these 
reasons, which are discussed in detail in Stiassnie & Peregrine (1980), it is reasonable 
to  assume that wave-breaking occurs close to the singular depth. 

Once the primary wave parameters have been found by the methods of $ 2  all 
other wave properties are readily found. Figures 4 and 5 illustrate a number of these 
at the 'breaking point ', that is, at the singular depth discussed above, as functions 
of a,. Once again the two cases 8, = 0 and 8, = 60" are shown. The graphs are limited 
to a,  -=z 0.41, the value above which rapidly growing instabilities occur (Longuet- 
Higgins, 1978). 

All the various properties shown in figures 4 and 5 have a difference between the 
values for 0, = 0 and 8, = 60" which is largely due to the shallower depth to which 
the latter waves propagate before breaking. This shallower depth may be interpreted 
as due to the smaller energy flux incident per unit length of beach. 

4. Trapped waves 
Most refraction problems for water waves assume implicitly that waves approach 

shallow water from deep water. However, waves do propagate from shallow water 
toward deeper water; for example, after propagating over a bar, or when approaching 
a dredged channel or submarine canyon. I n  these cases linear theory predicts that 
waves at  a sufficiently large angle of incidence are reflected from a caustic region 
beyond which these waves do not propagate. More precisely for the analysis we have 
considered in 3 2 waves may form a caustic if m2 > 1. Solutions corresponding to such 
waves have no equivalent deep-water wave (except that in linear theory the wave- 
number k, may be complex) and hence are not included in § 3. 

If waves are reflected a t  the shoreline and at a caustic, they are trapped; in the 
linear theory they are described by edge-wave modes. I n  this work the beach is 
assumed to be so gentle that  breaking rather than reflection is expected, and as 
a result our assumption of one wavetrain is somewhat more realistic. However, 
the neglect of interactions with waves reflected from a caustic is an important 
omission which is being studied further. Nonetheless the results are still of 
interest. 

The simplest, of these waves is one which only propagates parallel to the depth 
contours. Once the wavenumber is chosen there is a single set of solutions for which 
phase velocity is an appropriate parameter. The phase velocity determines the depth 
at which an infinitesimal plane wave can travel parallel to  the shore and also deter- 
mines the least depth at  which a finite-amplitude wave travels parallel to  the shore. 
The finite-amplitude portion of the wave, in shallower water than the zero-amplitude 
limit, can travel a t  the same speed by virtue of its greater steepness. These solutions 
have B, = 0, and examples are included in figures 6 and 7 .  

For other solutions there is now no special reference point, such as deep water, for 
specifying initial conditions, SO we simply choose values of B,wZ and m2 and solve 
(16)-(18) using the methods of 3 2. We take = 0 as before. The value of mz 
determines the position of any linear caustic and B,wk, the wave action, is a measure 
of the intensity. 

The calculated solutions appear to be satisfactory, except when 8 is near in. How- 
ever, the case 6' = &r is the simple example mentioned above. Thus by expanding in 
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FIGURE 6. Variation of amplitude with undisturbed depth, for trapped waves, with longshore 
wavenumber m2 = 1.1, at different values of onshore component of wave-action flux B,. The 
singularity in the linear solution occurs at  h * ~ * ~ / g *  = 1.38. The broken line shows the linear 
solution for B, = The solution in the hatched region is less well determined than elsewhere. 
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FIGURE 7. Variation of angle of incidence 0 with undisturbed depth for trapped waves, with 
longshore wavenumber m2 = 1.1. The solution i n  the hatched region is less well determined 
than those elsewhere. 
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- 0 it is a straightforward calculation to approximate (16) and (17) by 

( - c 2 ? j 2 / D + 3 T - 2 V + + D ~ ) q 5 - B 1 0 ~ m ~  = 0($3), (25) 

where ?j = D-d. 
Results are given for the case 

m2 = g*kX/oz2 = 1.1, 

for which the linear caustic is a t  

h = h*w:'/g* = 1.384, 

for values of wave-action flux given by 

B , ~ :  = o,io-6, 10-4, 10-3. 

Figures 6 and 7 show the variation of amplitude and angle of incidence with depth for 
these cases. The perturbation solution described above and the methods of $ 2  are 
adequate for all except the most intense waves considered (BlwfL = for which 
a region of doubtful accuracy remains. Taking further terms into account in (24) and 
(25) can be expected to improve accuracy here but the general trend of the solution 
is sufficiently clear. 

Near the caustic there are two solutions. The first lies close to the linear solution 
but reaches a singularity, where the solution curve has a vertical tangent, just inshore 
of the linear caustic position. Its amplitude increases very little as the singularity is 
approached. Indeed for the case of B, = 0 the singularity is at  zero amplitude. The 
pattern of the solution corresponds to the type-R near-linear caustic of Peregrine & 
Smith (1979) and is unlikely to be associated with wave-breaking. As indicated there, 
consideration of higher-order modulation effects gives a smooth reflecting solution. 
The reflected wave-train simply has the sign of B, reversed and the solution properties, 
other than those associated with the propagation direction, are unchanged. 

In this case we do not include the interaction between incident and reflected waves, 
as already mentioned. The solution needed to deal with this region is thus not fully 
elucidated. However, for the case B, = 0,  the linear approximation may be sufficient 
since the amplitude is zero a t  the singularity. An appropriate solution is part of a 
high-modenumber edge-wave solution with the same phase velocity. 

The solutions all have a second singularity, of the type we associate with breaking, 
in shallower water. There is also a second branch to the solution curves for non-zero 
B,. This branch is close to the B, = 0 solution and exhibits anomalous refraction, 
Once again, all other wave properties can be calculated. In figure 8, the set down S 
and longshore mean drift velocity, U,, are given for the cases Bl = 0 and 10-4. As 
may be seen, these are always a small fraction of the appropriate parameters, e.g. 
-6/h < 0.006, U2/c < 0-04. This is of relevance to the interpretation of results. The 
fact that the waves influence the propagating medium by modifying the depth and 
currents means that the analysis of Peregrine & Smith (1979) is not strictly applicable 
since these are not taken into account. However, since the calculated results show 
that the modifications of the medium are small, one can expect that these results, 
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I I 1 I 
-6 x 103 
UL x 102 c 

0 0.5 1.0 h ,  
FIGURE 8. Variation of set-down 6 and mean longshore Stokes-drift velocity UL 

for waves near a caustic, with rn, = 1.1, B, = 0 and ~ 8, u,----. 

and others that may be derived in future, for the simpler 'wave-only' case are only 
slightly modified for application in this case. 

5. Conclusion 
This work was commenced with the impression that it would be a straightforward 

extension of Stiassnie & Peregrine (1980). The analysis and computation proved to 
be more complicated than expected. The differences between these finite-amplitude 
solutions and linear theory is no greater than might be expected; indeed it appears 
that wave direction is little different from linear theory for waves heading within 60" 
of the line of greatest beach slope. 

Big differences from other theories occur in two circumstances. For the steepest 
waves, the limiting solutions give a clear indication that breaking may occur, and the 
variation of properties for slightly less steep waves is markedly different from linear 
theory. However it is similar to the results of Stiassnie & Peregrine. 

The other large differences are for waves which propagate almost perpendicularly 
to the direction of greatest depth variation. In this case, waves can be refracted in a 
sense which is opposite to that of linear waves; hence we introduce the term anomalous 
refraction. It is not entirely unexpected since studies of waves near caustics (Peregrine 
& Smith 1979; Peregrine & Thomas 1979; Peregrine 1981) show similar behaviour. 
The matter is discussed in more detail in Peregrine & Ryrie (in preparation), where 
it is noted that in the limit as the angle between wave propagation direction and the 
depth gradient approaches go", the linear approximation is qualitatively correct only 
for zero-amplitude waves. 

The methods we use for calculating properties of the steady wave are unlikely to 
be the most convenient in practice; they involve the use of two separate methods, for 
long and for short waves, in order to obtain accurate solutions for all wave steepnesses. 
A single computation method such as Rienecker & Fenton's (1981) recent improvement 
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of the ‘stream-function method’, which covers a full range of depths, but not the 
steepest waves, may be better, since where wave steepness is near maximum, wave 
properties vary rapidly, and the slowly varying assumption is not valid; our solutions, 
which do not take into account any interaction with bottom slope, may not be 
accurate here. 

We gratefully acknowledge the financial support of the Science Research Council 
for S. Ryrie. 
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